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A accurate and fast Monte Carlo algorithm is proposed for solving the 
Ginzburg-Landau equation with multiplicative colored noise. The stable cases 
of solution for choosing time steps and trajectory numbers are discussed. 
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Traditionally, the Fokker-Planck equation of high dimensionality is 
difficult to solve numerically, while the computer simulation (Monte Carlo 
method) of the equivalent nonlinear stochastic differential equation offers a 
powerful technique for obtaining information in the same context. There 
have been many substantial contributions to the subject, exemplified by 
the work of FOX. (1-3) A typical example is the simplest Ginzburg-Landau 
model (4) with finiter bandwidth noise source defined as 

= f ( x )  + g ( x )  y ( t )  

1 (2D) I/2 
p = - -  y + ~(t)  

Tc ~'c 

(r  =0, ( r  

(1) 

(2) 

(3) 

r is Gaussian white noise, r e is the colored noise correlation time, and 
D is a measure of the strength of the noise. Let f ( x )  = x -  x 3, g ( x )  = x. 
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The stable cases of numerical solution of these equations have not 
been studied with the same detail as in the cases of white-noise or additive 
colored-noise processes. (s'6) 

The algorithm presented here differs from previous approaches (4 7) in 
four ways: 

(i) The solution of the stiff equation (2) is obtained in closed from 
with no approximation. (2) 

(ii) Taylor expansion of g(x) only to the first order locally is needed 
to satisfy the optimal result when the stochastic order is equal to that of 
the deterministic one. Is) 

(iii) A semi-implicit technique for f ( x )  can give the greatest 
accuracy. 

(iv) The output results are average values of calculated points in the 
platform of the time steps. 

We begin the derivation by formally integrating Eqs. (1) and (2), 

y(t + h) = exp( - h/%) y(t) + (2D)m/%Wo(t, h) (4) 

t + h  dt' ft t+h x(t + h) = x(t) + ~ �9 f(x(t ' ))  + g(x(t')) y(t') dt (5) 
~t  

where 

Wo = exp ~(s) ds 
~ L % J 

Now we expand only g(x(t')) as follows: 

~g 
g(x(t')) = g(x(t)) + ~x [x(t ') - x(t)] 

(6) 

(7) 

At the lowest order o(h), we have from (5) 
t' 

x(t') - x(t)= f ( x ( t ) ) ( t ' -  t) + g(x(t)) It y(s) ds (8) 

Substituting (7) back into (5), we obtain 

Og 
x ( t + h ) = x ( t ) +  f (x ( t ) )h+g(x( t ) )Z l ( t ,h )+g(x ( t ) )~xZ2( t ,h  ) (9) 

Note that in Eq. (8), we take only terms of order h for r c ~ 0 ,  which 
corresponds to taking the limit of white noise, and where 

~ ,+h (2D)1/2 
- - W  1 ( 1 0 )  Zl(t 'h)=~t y ( t ' ) d t ' = % ( 1 - e  h/~) y(t)+ % 
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Here 

and 

(,t+h rt' r s _ t ,  ~ 
l'k'l = j t  dt 'J  exp ~(s) ds 

L % A 

z (t, h) = f'+h dc y(C)f" y(s) d, 

3 2 
c =-~- (1 --e h/,~)2 y2(t)+ (2D)l/2(l _e-h/~) y(t)W I 

2D f~+h +_-5 dt' Wo(t') wl(t') 
Tc t 

In general, 

(11) 

(12) 

Wo = (w~)l/~Rl 

(WOW1) [ 
W 1 -- <W20>1/2 R ,  + <W~> 

(14) 

<WOW1 >211/2 

The variance and the cross correlations of w0 and wl are readily deter- 
mined from their definitions (see ref. 6). 

The final algorithm reads: 

(1) Predictor: 

y(t + h) = exp(-h/~c) y(t) + (2D)l/2/~cWo 

2(t + h) = x(t) + hf(x(t)) 

+ g(x(t)){Tc[1 - exp(-h / rc)  ] y(t) + (2D)l/2/~cwl} 

+ [g(x(t))/Z](Sg/Sx){r~[ 1 - exp( - h/%)] 2 ya(t) 

+ 2(20)1/211 - exp(-h/ r~)]  y(t)Wl 

+ (2D/zZ)(w 2 - p (  w~ )) } (16) 

where p = 0 (1) results in the Stratonovich (It6) form. 
If R1, R2 are two uncorrelated Gaussian variables with average zero 

and standard deviation one, they are generated by the Box-Mtiller 
formula, 

;, ,+h  d t '  Wo(t ' )  w l ( t ' ) =  ~ 2 ~[wl-p(w~)] (13) 
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(2) Corrector: 

x ( t  + h) = x ( t )  + ( h / 2 ) [ f ( x ( t ) )  + f(Yc(t  + h))] 

+ g ( x ( t ) ) { % [ 1  - exp( - h / v , ) ]  y ( t )  + (2D)l /2/vcw 1 } 

+ [g (x ( t ) ) /2 ] (Og /Ox){~2[1  - exp( - h / ~ c ) ]  2 y2( t )  

+ 2(2D)~/2[1 - exp(-h/~c)  ] y((t)w~ 

+ (2D/~ 2)(w 2 - p ( w 2 >)} (17) 

Note that w0 and w~ used in (16) are the same as those of (17). All of the 
cited algorithms explicitly invoke the Stratonovich choice and not the It6 
choice, which requires that p satisfy p = 0. 

The aim of our simulations is the determination of the first and second 
moments at the stationary state, which are computed and averaged over 
20,000 distinct trajectories, starting from {x (0 )=  0.5, y(0) according to the 
appropriate Gaussian distribution}. The numerical results of the three 
methods are shown in Figs. la and lb for two groups of parameters: 
D = 0 . 5 ,  z~=0.3,  and D =  1.5, ~ = 2 .  

The results show that the sampling error in the moments is strongly 
dependent on the algorithm chosen. The semi-implicit algorithm in the 
present study generally has the lowest error and allows a much larger time 
step. By increasing the step size to 0.06 and 0.09, we find that the algorithm 
of ref. 4 ~leads to numerical overflow in the above two groups of parameters, 
respectively. It is evident that our algorithm has a range of convergence far 
larger than either the algorithm of ref. 4 or the Euler method, and the 
white-noise limit (i.e., ~--* 0, h finite, h/~c ~ oe) can be safely taken. 
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Fig. 1. The numerical results of the first and second moments vs. the time step. Circles, 
algorithm of ref. 4; crosses, Euler method; squares, algorihtm of this paper�9 (a) D=0.5, 
%=0.3, (b) D =  1.5, ~c=2. 
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Table I. The Simulation Results vs. Trajectory Number (h--O.05) 

D = 0.5, r,. = 0.3, time = 8 D = 1.5, % = 2, time = 10 

N (x2)st a (X)s t a (X2)s t  a (X)s t a (X2)s t  (4) ( X ) s  t (4) 

1000 1.008445 0.9306765 1.004083 0.916596 1.005249 0.915108 
5000 1.015417 0.9335762 1.013147 0.920507 0.992142 0.906477 

10000 1.006932 0.9300061 1.014279 0.921361 0.989836 0.903631 
15000 1.008554 0.9300036 1.013206 0.920712 0.993527 0.905108 
20000 1.005929 0.9282101 1.012981 0.921867 0.989958 0.903341 

Present paper. 

We have checked our  result against Fox 's  second-order  algorithm. (3t 
For  a step size of  0.08, the two algori thms give identical results for an 
average of over 20,000 realizations. This shows that  higher expansions in h 
may  not  be necessary from a practical point of view. (5~ 

Treat ing stochastic differential equations by the Monte  Carlo method,  
one will have two major  contr ibut ions to the error, namely the time dis- 
cretization and another  one from the finite number  of realizations. Table ! 
shows the solutions versus the trajectory number  N. It is seen from Table I 
that  the dependence of the simulation results on the number  of realizations 
can surely be more  stable. The output  results are average values of each 
calculated point  in the platform of the time step, and they are more  
accurate and reliable than those from the linear extrapolat ion method. (5~ 

In conclusion, the algori thm proposed here gives much smaller errors 
than other  methods,  especially when calculating the moments.  It is 
probably  the most  stable in the case of  stiff equations;  in addition, it is 
shorter, runs faster, and permits the use of  longer time steps. 
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